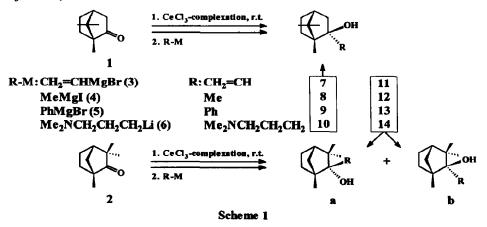


Pergamon

0040-4039(94)01360-8

CERIUM(III) CHLORIDE AS CATALYTIC AND STOICHIOMETRIC PROMOTER OF THE QUANTITATIVE ADDITION OF ORGANOMETALLIC REAGENTS TO (+)-CAMPHOR AND (-)-FENCHONE


Vladimir Dimitrov*, Svetoslav Bratovanov, Svetlana Simova and Kalina Kostova

Institute of Organic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

Abstract: Quantitative addition of organolithium and *Grignard* reagents to camphor (1) and fenchone (2) proceeds *via* precomplexation of the ketone with CeCl₃ at room temperature. Excellent addition using catalytic or substoichiometric amounts of CeCl₃ is demonstrated for the first time.

The use of organocerium reagents has been pioneered by *Imamoto*^{1a-d} as a route providing a novel reactivity within the nucleophilic additions to carbonyl compounds. The advantages of these reagents have been widely demonstrated². The used procedures include the initial preparation of anhydrous CeCl₃ and the corresponding tetrahydrofuran complex as a suspension by stirring at room temperature^{1c} or by sonication³. The addition of the organometallic reagent, typically at low temperature, leads ordinarily to a heterogeneous mixture in which the *in situ* formed reagent is formulated as "RCeCl₂" (Scheme 2, method A). In the addition reactions to carbonyl compounds the organocerium reagent is applied in moderate or often in large excess.

We report herein a modified approach for activation of carbonyl compounds by initial complexation with stoichiometric amounts of $CeCl_3$ at room temperature providing excellent addition of organolithium and *Grignard* reagents. With the ketones 1 and 2, following this approach, we demonstrate the first example of the use of $CeCl_3$ in catalytic amounts.

We selected the sterically hindered unreactive ketones (+)-camphor (1) and (-)-fenchone (2) as relatively inexpensive starting materials leading to optically active tertiary alcohols. It has been shown that successful addition of vinyl⁴ and 4-methylpentenyl^{1c} Grignard reagents to 1 and 2, respectively, could be achieved by the mediation of CeCl₃. Usually, the reactivity of 1 and especially of 2 towards some lithium and magnesium organometallics is low even with extended reaction times and excess of reagent^{5a-e}.

On the basis of systematic investigations we suggest a simpler, faster and more effective procedure for the quantitative conversion of the ketones 1 and 2 into the corresponding alcohols 7-10 and 11-14 (Scheme 1 and 2, method B) than the low temperature generation of "RCeCl₂" reagents (method A). The addition of CeCl₃/vinylmagnesium bromide to 1 and 2 via method A, according to Lit.⁴ (RCeCl₂ generation at -78°C), led to the alcohols 7 and 11 with 92% and 87% conversion, respectively, even with an excess of organocerium reagent and extended reaction times. In contrast, applying method B in the same addition reactions, we observed a quantitative conversion within very short reaction times (Table 1, entries 1 and 2). Our method B includes as a decisive step the complexation of the ketone with CeCl₃ in THF at room temperature, recognizable by the formation of an yellow gel-like mixture. We found that CeCl₃ possessed different ability to form this gel-like mixture (formation times between 15 min. and 2 h) depending on the drying rate of CeCl₃.7H₂O in vacuo⁶. The organometallic reagent is added, in most cases, rapidly at room temperature in the course of which, the initial heterogeneous mixture of CeCl₃ and the complexed ketone turned to an almost homogeneous one, in some cases even to a turbid solution. On the contrary, the low temperature mixing of CeCl₃ and the organometallic reagent results in the formation of a highly heterogeneous mixture with unknown concentration of "RCeCl2" species. The exact stoichiometry in the case of method A is difficult to assess, as it has been shown that after mixing of MeLi and CeCl₃ in 1:1 ratio in THF the remaining undissolved solid is pure CeCl₃⁷. It should be further noted, that the "reversed addition" (like our method B) described by Imamoto - addition of a Grignard reagent to the mixture of ketone and CeCl3 at 0°C (there is no data on complex formation)1c - even though providing satisfactory results with some ketones can not compete with method A.

MethodA (via low-temperature generating of "RCeCh2" reagent)

CeCl₃ in THEF
$$\stackrel{+R-M}{\longrightarrow}$$
 RCeCl₂ in THEF $\stackrel{+ \ge O=O}{\longrightarrow}$ $>_C = OCeCl_2$ in THEF
low temperature R

$$>C=0 + CeC_{3.n}THF \xrightarrow{r.t.} >C=0 \rightarrow CeC_{3.n}THF \xrightarrow{+R-M} >C=0CeC_{2.n}THF \xrightarrow{+R-M} = C=0CeC_{2.n}THF$$

$$\xrightarrow{+>C=0}_{R} (>C=0)_{Ce.n}Ce.nTHF$$

Method B (via complexation of the ketone with CeCh)

Scheme 2

The complexation of 1 and 2 with stoichiometric amounts of CeCl₃, using method B, led in all cases to quantitative addition of the organometallic reagents 3-6. For the first time we observed that diminished or catalytic amounts of CeCl₃ could provide an excellent addition of the organometallic reagent, e.g. 5 mol % of CeCl₃ allows a quantitative addition of vinylmagnesium bromide to camphor within 1h (Table 1).

We reasoned that when method B was used the reaction of the organometallic reagent at room temperature would occur with the CeCl₃ complexed ketone rather than with the uncomplexed CeCl₃, present in the mixture, because it is known that for example the vinyl *Grignard* reagent decomposes even at 0°C on contact with uncomplexed CeCl₃^{1c}. The addition of equimolar quantities of CeCl₃/organometallic reagent would lead to alkoxide of the type ROCeCl₂. The application of CeCl₃ in 0.33 equivalents would result in the formation of the alkoxide (RO)₃Ce. When 0.10 or 0.05 equivalents are used, the initially formed (RO)₃Ce would appear as the acting catalyst, being able to activate further amounts of the ketone *via* complexation.

Entry	Ketone	Reagent composition		Timeb	Product		Yieldd	bp/Torr
	(equiv)	CeCl ₃	R-M	[h]	composition ^c		[%]	(mp)
		equiv	(equiv)		(%)	(%)		[°C]
1	1 (1)	0.05	3 (1.10)	1	7 (100)	1 (-)	93	61/3
2	2 (1)	1.20	3 (1.20)	1	11 (100)	2 (-)	95	58/2
					(11a/11b =			
3	2 (1)	0.33	3 (1.20)	1	11 (77)	2 (23)		
4	2(1)	0.05	3 (1.20)	15	11 (58)	2 (42)		
5	1 (1)	0.33	4 (1.10)	3	8 (100)	1 (-)	91	(158-160) ^f
6	2(1)	0.10	4 (1.10)	2	12 (100)	2 (-)	85	(53-54)
			. ,		$(12a/12b = 100/0)^{\circ}$. ,
7	1 (1)	1.20	5 (1.20)	1	9 (100)	1 (-)	75	105/0.5g
8	1(1)	0.05	5 (1.10)	4	9 (66)	1 (44)		
9	2 (1)	1.20	5 (1.20)	1	13 (100)	2 (-)	87	92/0.5
					$(13a/13b = 17/83)^{\circ}$			
10	2 (1)	0.05	5 (1.10)	24	13 (12)	6 (88)		
11	1 (1)	1.20	6 (1.20) ^h	2	10 ⁱ		77	(38-40)
12	1(1)	0.05	6 (1.10) ^h	2	10 ⁱ		53	. ,
13	2 (1)	0.05	6 (1.10) ^h	1	14 ⁱ		97	70°C/0.001j
	. ,				(14 a /14b =	= 100/0)¢		

 Table 1. Addition of organometallic reagents to 1 and 2 using method B^a (0.33, 0.10 and 0.05 equivalents of CeCl₃ were tested in all additions; representative examples are shown only).

^aMethod B: THF and the ketone are added to the anhydrous CeCl₃. The initial white suspension is vigorously stirred at room temperature until an yellow gel-like mixture is formed (formation times up to 2h). The organometallic reagent is added at room temperature (within 5-10 min), if not noted otherwise. ^bStirring at room temperature after the introduction of the organometallic reagent. ^cRatio by NMR. ^dYields of isolated analytically pure compounds, fully characterised by spectroscopic methods (MS, ¹H and ¹³C NMR, $[\alpha]_D^{20}$). ^eRatio of isomers by NMR. ^fCompound 8 is pure by GC; Lit.^{5a} mp 168°C. ⁸Lit.^{5d} bp 120-140°C/3.5 Torr. ^hThe organolithium compound 6 is added at -20°C and the mixture is allowed to warm to room temperature within 45 min. ⁱProduct composition is not determined. ^jDistillation by Kugelrohr.

In most cases we observed the expected stereochemistry^{4,5,8} of the reaction products - only *exo*-alcohols with 1 and *endo*-alcohols with 2. Similar *endo*- and *exo*-addition selectivities in addition of organometallic reagents to the related ketones 1-vinyl-7,7-dimethyl norbornanone and 1-vinyl-3,3-dimethyl norbornanone have been recently observed⁹. Interestingly, phenylmagnesium bromide adds to fenchone predominantly

from the *endo*-side resulting in preferred *exo*-alcohol formation (13a/13b=17/83). It may be explained with increased steric hindrance between the phenyl protons of the reagent and the fenchone protons in C-7 position and those of the C-3 bonded methyl groups. The anomalous behaviour of phenyl reagents has been first described in additions to substituted cyclohexanones^{3b,8}.

Acknowledgement: Support of this work by the Bulgarian National Fund for Scientific Research via project X-53 is gratefully acknowledged.

References and notes

- (a) Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. J. Org. Chem. 1984, 49, 3904-3912. (b) Imamoto, T.; Takiyama, N.; Nakamura, K. Tetrahedron Lett. 1985, 26, 4763-4766. (c) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392-4398. (d) Imamoto, T. Pure Appl. Chem. 1990, 62, 747-752.
- 2. Molander, G. A. Chem. Rev. 1992, 92, 29-68.
- (a) Greeves, N.; Lyford, L. Tetrahedron Lett. 1992, 33, 4759-4760. (b) Greeves, N.; Lyford, L.; Pease, J. E. Tetrahedron Lett. 1994, 35, 285-288.
- 4. Keegan, D. S.; Midland, M. M.; Werley, R. T.; McLoughlin, J. I. J. Org. Chem. 1991, 56, 1185-1191.
- (a) Capmau, M.-L.; Chodkiewicz, W.; Cadiot, P. Tetrahedron Lett. 1965, 1619-1624. (b) Watanabe, S.;
 Suga, K.; Suematsu, Y.; Suzuki, T. Aust. J. Chem. 1968, 21, 531-536. (c) Chodkiewicz, W.; Capmau,
 M.-L.; Gerde, B. C. R. Acad. Sci. paris Ser. C, 1968, 267, 911-914. (d) Bernstein, D. Liebigs Ann.
 Chem. 1967, 710, 98-101. (e) Erman, W. F.; Flautt, T. J. J. Org. Chem. 1962, 27, 1526-1535.
- 6. Cerium(III) chloride (CeCl₃.7H₂O, Fluka) was dried, according to Lit.^{1c}, in 30 g quantities in a Schlenk flask equipped with PTFE stirring bar and connected to a liquid nitrogen trap. The flask is evacuated (0.001 Torr, high vacuum pumping unit Vakuumbrand) and heated at 80°C for 2-3h, and for additional 3-4h at 100°C. Then the temperature is raised to 140-145°C and maintained until no more water condenses in the cold trap (ca. 30h). The anhydrous CeCl₃ is stored in a Schlenk flask under argon atmosphere, without loss of any activity during several months.
- 7. Denmark, S. E.; Edwards, J. P.; Nicaise, O. J. Org. Chem. 1993, 58, 569-578.
- 8. Ashby, E. C.; Laemmle, J. T. Chem. Rev. 1975, 75, 521-546.
- (a) Doyon, J.; He, W.; Paquette, L. A. J. Org. Chem. 1994, 59, 2033-2042. (b) Paquette, L. A.; DeRussy, D. T.; Vandenheste, T.; Rogers, R. D. J. Am. Chem. Soc. 1990, 112, 5562-5573 and relevant references cited in these papers.

(Received in UK 4 May 1994; revised 13 July 1994; accepted 15 July 1994)